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Cluster mass-redshift plane
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Galaxies in the Cosmic Evolution Survey
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Fitting the redshift distribution of galaxies
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Cluster-galaxy cross-correlation function
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Use of projected correlation function
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cluster catalogue can be used as a comparator to the cluster auto-correlation function,

discussed below.

4.1.2 Extensions and corrections

With the data products for this chapter introduced, it is time to once again commence

discussion of some methodological ideas for improving the measurement. The

statistic used in the projected cluster–galaxy cross-correlation, wp (rp ) has been

introduced in Section 2.1.4.2, and this section discusses two technical alterations to

the projection integral that improve the robustness of the measurement.

4.1.2.1 Large-scale completion with Gaussian envelope

Figure 3 in Phleps et al. (2006) shows the effect of velocity dispersion and redshift

errors on the line-of-sight direction of ξLS
cg (rp ,π); these effects are removed by inte-

grating through this direction, giving the projected cluster–galaxy cross-correlation

function

wp (rp ) = 2
∫∞

0
ξLS

cg (rp ,π)dπ; (4.1.5)

the upper limit of integration, determined by the dispersion in the photometric

redshifts of the galaxies, is set atπcut = 200Mpc/h. However, rather than disregard the

remainder of the two-dimensional correlation function, it is possible to estimate the

power above this cutoff by fitting a Gaussian G(Aπ,σπ) to the measured distribution

ξLS
cg (rp = c,π) and integrating this analytic function in regions about the threshold

πcut. The parameters {Aπ,σπ} are determined at each rp by minimising the merit

function

χ2
π =

n∑

i=1

(
ξLS

cg (rp = c,π)− Aπexp
(
−π2/2σ2

π

)

∆ξLS
cg (rp = c,π)

)2

, (4.1.6)

so that

wp (rp ) =
∫πcut

0
ξLS

cg (rp ,π)dπ+
∫∞

πcut

Aπ(rp )exp
[
− π2

2σπ(rp )2

]
dπ

= wp (rp )cut + Aπ(rp )erfc

(
πcut

σπ(rp )
#

2

)

. (4.1.7)
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Fig. 5. ξ(rp, π) of all COMBO-17 galaxies with 0.4 < z < 0.8,
I815 < 23 and MB < −18. Again the data from the first

quadrant are repeated with reflection in both axes. In the trans-

verse direction the pair separations accessible for the analysis

are limited by the COMBO-17 field of view.

a jack-knife analysis. We divide each field into four quadrants,

and then calculate the correlation functionw(rp) (including the
integral constraint) for twelve realisations of the data, each time

omitting one of the quadrants. The variance in w is then given

approximately by

σ2 =
N − 1

N

∑

i=1,N

[〈w(rp)〉 − wi(rp)]
2 , (18)

where N = 12 is the number of realisations of the data (e.g.
Scranton et al. 2002).

In order to check for cross-correlations between the data

points, we can extend the jack-knifemethod in the obvious way

to estimate the covariance between different bins, σ2
ij . The nat-

ural way to express this is as a correlation coefficient matrix:

rij ≡ σ2
ij/σiσj . Results in this form are presented below.

5. The clustering of the COMBO-17 galaxies

5.1. Results

We calculated ξ(rp, π) for all COMBO-17 galaxies in the red-
shift range 0.4 < z < 0.8 with I-band magnitudes I < 23 and
absolute restframe B band luminosities MB < −18. We used
the estimator invented by Landy & Szalay (1993). An angular

mask for the survey was derived by censoring the surround-

ings of bright stars in the fields. The same mask was applied to

a random catalogue consisting of 30 000 randomly distributed

galaxies, each of which was assigned a redshift taken randomly

from the real data, where the three fields were put together

in order to smooth the redshift distribution. Using a smoothed

form of the empirical redshift distribution did not yield a sig-

nificant change in the results.

The resulting ξ(rp, π) is shown in Fig. 5. The field of view
of the COMBO-17 fields limits the pair separations accessible

for the analysis, so in the transverse direction there is of course

no signal at separations larger than the physical distance corre-

sponding to the diagonal diameter of the fields.

For each object, we have an estimate of the redshift and the

restframe colours and luminosities; it is therefore possible to

divide the sample into two distinct colour classes as described

earlier. For both samples we calculated w(rp) as described in
section 4, correcting for the integral constraint I, and the influ-
ence of the redshift errors. These results are shown in Fig. 6.

5.2. Fitting the halo model

Fig. 6 also shows predictions from the halo model, varying

the single occupation-number parameter α, and choosing the
cutoff Mc so as to match the observed comoving densities of

0.004h3Mpc−3 (red) and 0.012h3Mpc−3 (blue). It is appar-

ent that there is greater sensitivity to α at small separations,

and that once α is fixed from the data there, there is little

freedom at large separations, where the data and the model

match satisfyingly well. The preferred values are approxi-

mately α = 0.5 for the red population and α = 0.2 for blue
galaxies. These figures correspond to cutoff masses of respec-

tively Mc = 1012.15h−1M" and Mc = 1011.50h−1M". As

discussed earlier, a more meaningful way of casting these num-

bers may be to apply the HODmodel to the halo mass function,

to calculate the effective halo mass, weighting by galaxy num-

ber. These figures come out as Meff = 1013.21h−1M" and

Meff = 1012.52h−1M" respectively.

Fig. 6 also shows a magnified view, with the measured

correlation functions and the corresponding best-fitting models

both divided by a power-law fit (fitted in the range log10 rp <
1.1), the slope and amplitudes of which are given in Table 2.
The data points do not scatter arbitrarily around the power-law

fit, but show systematic deviations. For the red galaxies, there

is a marked dip around rp % 1.5 h−1 Mpc; the blue galaxies
are closer to a power law, but with a relatively abrupt step at

rp % 0.2 h−1 Mpc. Both these features are impressively well
accounted for by the halo model predictions, especially when

it is considered that there is only one free parameter.

It is interesting to compare our results with those of the

VVDS project (Le Fèvre et al. 2005). They give results to a

similar depth for two fields, although not divided by colour,

with a total of 7155 redshifts over 0.61 deg2. Their redshift

bins are not identical, but they quote r0 = 2.69+0.53
−0.59 h−1 Mpc

and γ = 1.71+0.18
−0.11 at 〈z〉 = 0.6 and r0 = 4.55+1.25

−1.56 h−1 Mpc

and γ = 1.48+0.28
−0.15 at 〈z〉 = 0.7. The latter figure is from the

CDFS, which is one of our fields, and we have checked that our

figure for this field alone agrees well with the VVDS, as it does

for our other fields. The VVDS 2h field thus gives a somewhat

lower clustering strength; this may be because the VVDS sam-
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Projection of decomposed distribution
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Projected cross-correlation function
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Compactness of the galaxy distribution
Cluster–galaxy cross-correlation in COSMOS 9
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Figure 5. Projected cluster–galaxy cross-correlation function by Subaru I+-band galaxy luminosity class, with the ordinate once again
plotted as a dimensionless quantity. The galaxies are grouped in four intervals with limits chosen so that the average luminosities of the
bins are equally spaced; this results in both uneven bin widths (as shown by the text labels) and uneven numbers of galaxies in each bin
(see Table 1). The large-scale agreement between cross-correlation functions is indicative of the luminosity classes occupying haloes of
the same distribution of masses, while the segregation at small scales demonstrates a broadening of the galaxy number profile for dimmer
objects.

band magnitude is shown in Figure 9. Both parameters show
dependencies inconsistent with the null hypothesis that no
correlation will exist. This correlation is not unexpected; it
is well known that brighter galaxies are more strongly clus-
tered. Understanding the mechanism by which this occurs
is an interesting goal; though the appearance of a trend is
unambiguous here, it is difficult to state a causal relation-
ship directly. In this data set, intrinsically fainter galaxies
are systematically associated with lower redshift clusters,
which are the only clusters for which a lower range of clus-
ter masses are probed. Consequently, on the strength of the
analysis carried out to this point, it should be concluded
that i) brighter galaxies occupy dark matter haloes in a pro-

gressively steeper fashion, so that brighter galaxies are more
strongly associated with the centre of clusters; and/or ii)
that the correlation between fainter galaxies and lower mass
clusters has a strong influence on the clustering of galaxies
within clusters, and that a positive trend exists between the
profile and cluster mass or redshift.

It is clear that disentangling the relationships between
galaxy luminosity, cluster mass and cluster redshift is a pri-
ority, but measurement of the variation with cluster prop-
erties in particular presents some difficulty. Figure 10 shows
the selection effect correlating cluster mass and redshift;
splitting the sample by these quantities separately produces
results that are difficult to interpret. One possibility, not

c© 2009 RAS, MNRAS 000, 1–19

Cluster–galaxy cross-correlation in COSMOS 15
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Figure 8. Probability distributions for the intra-cluster slope
of the cross-correlation function across galaxy luminosity classes,
determined by the marginalisation through r0 of the likelihood
distributions shown in Figure 5. The slope of the galaxy num-
ber density profile across clusters with the distribution of masses
studied in this work shows an decrease with luminosity.
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b2
eff(Mi) = bc(Mi)

∑nc

j=1
bc(Mj)N(Mj)∑nc

j=1
N(Mj)

(29)

The purpose of computing the bias as a sum is to incor-
porate information about the field itself—rather than treat-
ing the field variance as a source of noise, it can be used
as signal. Numerical simulations have shown that, at these
mass scales, the halo occupation distribution is not sensitive
to environment; this was recently confirmed with the SDSS
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Figure 13. Comparison of the mass dependence of bias param-
eters at redshift zero for the three choices of mass function given
in Eqs. (22), (23) and (25), determined following Eq. (21).

data by ?. As a result, it is argued here that contributions to
the clustering of objects within a field can be evaluated from
knowledge about those objects alone. Ideally, one should use
conditional mass function to include the contribution from
objects below the mass limit—this term is neglected here as
the occupation numbers associated with these systems are
very low, and they do not contribute substantially to the
cross-correlation measurement.

This leads to an interesting improvement in the uncer-
tainty of the model relative to that of the measurement—
field variance, which is a significant source of uncertainty
in clustering, is incorporated into the construction of the
model, while it must be accommodated through additional
uncertainty in the measurement.

For the choice of halo occupation model, we use the
most straight-forward choice, a two-parameter model

N(M) =

{
0, M < Mc

(M/Mc)
α, M ! Mc,

(30)

in which a single central galaxy occupies a halo only above a
mass threshold Mc, with the abundance of satellite galaxies
determined by the index, α, of the power law.

4.2 One-halo regime and galaxy profiles

The small-scale dependence of the cross-correlation function
reflects the density profile of the clusters, subject again to a
possible radial bias reflecting the formation sites of galaxies.
A common choice is the density profile of Navarro et al.
(1996):

ρ
〈ρ〉 =

∆c(
r
rs

) (
1 + r

rs

)2 , (31)

where both ∆c, the characteristic density contrast of the
halo, and rs, its scale radius, are functions of the halo mass.

c© 2009 RAS, MNRAS 000, 1–19
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Figure 6. Projected cross-correlation relative to the best fitting power law for each of four samples selected by a cut in galaxy magnitude,
as described in Table 1; the same set of 220 clusters are used in each measurement. The measurements presented here have been scaled
by progressive factors of ten along the ordinate for clarity; the exponent of the power law α indicates a steeper profile for galaxies at
brighter magnitudes with a progressive flattening at higher magnitudes, though the departure from power law fitting characteristic of
the transition from inter- to intra-halo clustering at intermediate ranges is observed in all cases.

pursued here, is to divide the plane into regions (by regular
or adaptive gridding, or by an irregular tessellation) that are
used to group objects when calculating the cross-correlation
function. The reason this is unattractive is that with no
natural notion of separation across the plane—how does a
separation of 0.1 in redshift compare to the same in mass?—
such groupings are arbitrary. A better strategy is to treat
each point individually—i.e. , for each cluster, the distances
to each object in the galaxy catalogue are calculated, and
the counts used to construct 220 separate cross-correlation
functions—and use the measurements as the basis for the
reconstruction of a function in the mass–redshift plane.

4 HALO MODEL DESCRIPTION OF
CLUSTERING

We now proceed to compare these results with the a priori
predictions of the halo-based statistical description (Seljak
2000; Peacock & Smith 2000; Cooray & Sheth 2002). Ac-
cording to the simplest version of this prescription, galaxies
are distributed within dark matter halos by placing one cen-
tral galaxy, with the remainder being distributed in a man-
ner consistent with the halo mass density profile, taken to be
that of Navarro et al. (1997) or Moore et al. (1999b). This
latter assumption is unlikely to be true in detail, and it is of
interest to investigate empirically the extent to which it is
violated. On larger scales, the halos are taken to be clustered

c© 2009 RAS, MNRAS 000, 1–19
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Figure 8. Probability distributions for the intra-cluster slope
of the cross-correlation function across galaxy luminosity classes,
determined by the marginalisation through r0 of the likelihood
distributions shown in Figure 5. The slope of the galaxy num-
ber density profile across clusters with the distribution of masses
studied in this work shows an decrease with luminosity.
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The purpose of computing the bias as a sum is to incor-
porate information about the field itself—rather than treat-
ing the field variance as a source of noise, it can be used
as signal. Numerical simulations have shown that, at these
mass scales, the halo occupation distribution is not sensitive
to environment; this was recently confirmed with the SDSS
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Figure 13. Comparison of the mass dependence of bias param-
eters at redshift zero for the three choices of mass function given
in Eqs. (22), (23) and (25), determined following Eq. (21).

data by ?. As a result, it is argued here that contributions to
the clustering of objects within a field can be evaluated from
knowledge about those objects alone. Ideally, one should use
conditional mass function to include the contribution from
objects below the mass limit—this term is neglected here as
the occupation numbers associated with these systems are
very low, and they do not contribute substantially to the
cross-correlation measurement.

This leads to an interesting improvement in the uncer-
tainty of the model relative to that of the measurement—
field variance, which is a significant source of uncertainty
in clustering, is incorporated into the construction of the
model, while it must be accommodated through additional
uncertainty in the measurement.

For the choice of halo occupation model, we use the
most straight-forward choice, a two-parameter model

N(M) =

{
0, M < Mc

(M/Mc)
α, M ! Mc,

(30)

in which a single central galaxy occupies a halo only above a
mass threshold Mc, with the abundance of satellite galaxies
determined by the index, α, of the power law.

4.2 One-halo regime and galaxy profiles

The small-scale dependence of the cross-correlation function
reflects the density profile of the clusters, subject again to a
possible radial bias reflecting the formation sites of galaxies.
A common choice is the density profile of Navarro et al.
(1996):

ρ
〈ρ〉 =

∆c(
r
rs

) (
1 + r

rs

)2 , (31)

where both ∆c, the characteristic density contrast of the
halo, and rs, its scale radius, are functions of the halo mass.
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Figure 7. Joint likelihood distributions for the parameters of the power law (Eq. 13) given the cross-correlation measurements of Figure 5,
under the assumption of a uniform prior over the physically motivated interval product (γ, r0) ∈ [1, 3]× [1, 60]. The grayscale background
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to be expected given that the integrated galaxy number density profile about the same distribution of clusters operates with a rough
conservation law. The relatively loose constraints on the dimmest class of galaxies result from the sharp turn-over in the cross-correlation
function on very short scales, apparent in Figure 5.

as per the linear fluctuations of the cosmological density field
subject to a bias factor. In this section we describe in detail
the generation of the cross-correlation prediction.

In halo-based models, two-point correlation functions
are the sum of terms corresponding to pairs (i) within the
same halo; and (ii) in distinct halos. The latter case applies
at scales well above the size of individual clusters, where
the cross-correlation function counts cluster-galaxy pairs for

galaxies in a halo distinct from that of their host clusters,
so that

ξcg(r) = ξ1−halo(r) + ξ2−halo(r). (15)

The 1-halo term simply measures the radial spherically-
averaged density profile ρ(r) (which could denote galaxy
number density, or matter density if we wished to consider
the cluster-mass cross-correlation). Because the 2-halo term
dominates at large scales, the simplest implementation of the

c© 2009 RAS, MNRAS 000, 1–19
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Figure 8. Probability distributions for the intra-cluster slope
of the cross-correlation function across galaxy luminosity classes,
determined by the marginalisation through r0 of the likelihood
distributions shown in Figure 5. The slope of the galaxy num-
ber density profile across clusters with the distribution of masses
studied in this work shows an decrease with luminosity.
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The purpose of computing the bias as a sum is to incor-
porate information about the field itself—rather than treat-
ing the field variance as a source of noise, it can be used
as signal. Numerical simulations have shown that, at these
mass scales, the halo occupation distribution is not sensitive
to environment; this was recently confirmed with the SDSS
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Figure 13. Comparison of the mass dependence of bias param-
eters at redshift zero for the three choices of mass function given
in Eqs. (22), (23) and (25), determined following Eq. (21).

data by ?. As a result, it is argued here that contributions to
the clustering of objects within a field can be evaluated from
knowledge about those objects alone. Ideally, one should use
conditional mass function to include the contribution from
objects below the mass limit—this term is neglected here as
the occupation numbers associated with these systems are
very low, and they do not contribute substantially to the
cross-correlation measurement.

This leads to an interesting improvement in the uncer-
tainty of the model relative to that of the measurement—
field variance, which is a significant source of uncertainty
in clustering, is incorporated into the construction of the
model, while it must be accommodated through additional
uncertainty in the measurement.

For the choice of halo occupation model, we use the
most straight-forward choice, a two-parameter model

N(M) =

{
0, M < Mc

(M/Mc)
α, M ! Mc,

(30)

in which a single central galaxy occupies a halo only above a
mass threshold Mc, with the abundance of satellite galaxies
determined by the index, α, of the power law.

4.2 One-halo regime and galaxy profiles

The small-scale dependence of the cross-correlation function
reflects the density profile of the clusters, subject again to a
possible radial bias reflecting the formation sites of galaxies.
A common choice is the density profile of Navarro et al.
(1996):

ρ
〈ρ〉 =

∆c(
r
rs

) (
1 + r

rs

)2 , (31)

where both ∆c, the characteristic density contrast of the
halo, and rs, its scale radius, are functions of the halo mass.

c© 2009 RAS, MNRAS 000, 1–19
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Is it possible to partition a metric-less plane?
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The analytic halo model
of galaxy clustering

Two
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An n-point separation of scales
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Clustering between haloes

ν ≡ δc
σ(M,z)
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Clustering within haloes

ρ

ρ̄
= ∆c

(
r
rs

)(
1+ r

rs

)2
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Figure 4.20: The growth and transfer functions of the cosmological density field out to
redshift z ∼ 5. Top: The linear growth function g (z) following Carroll et al. (1992b), with
the regime used for the application in this chapter plotted as a solid line; Bottom: Transfer
function for a representative range of scales (plotted in real, not comoving, wavenumber),
with different lines mapping the change from the present day (black) to high redshift (red;
dashed after z = 2).
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Linear matter power spectrum
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Bias: how clusters and galaxies follow dark matter
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Galaxy bias and halo occupation

bg ≈
∑nc

i=1 bc(Mi)〈Ng(Mi)〉∑nc

i=1〈Ng(Mi)〉
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Figure 4.22: The scaling of collapsed overdensities in the linear cosmological density field.
Top: The overdensity parameter ν, characterising the collapse threshold relative to the rms
variance of the underlying density field at epoch z, ranging from redshift zero (black) to
z ∼ 5. Bottom: The bias factor of collapsed structures of density M for two different mass
function prescriptions of Peacock (2007b) and Sheth & Tormen (1999), shown in blue and
red respectively, from high redshift (brightest colour) down to the present time.
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bg =
∫

bc(M)〈Ng(M)〉n(M)dM∫
〈Ng(M)〉n(M)dM

beff ≈ bc(M)bg
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Density profile of dark matter haloes

ρ
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Cluster property dependence (preliminary)
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∆ log10 M
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What are statistics of large-
scale structure actually for?

Three
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Problem: Classification of density fields
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How to classify everything that is not x
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How to classify everything that is not x
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List of non-Gaussian physical processes

Non-linear gravitational evolution

Primordial non-Gaussianity

Redshift space distortion

‘Bias’

...
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Contour surfaces through the density field

Voids Filaments Clusters
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Genus number of contour surfaces
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Genus curve of the density field
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Genus curve of the density field
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Digression: a differential topology calculation

K(x) =
1

r1(x)r2(x)

∫

S
KdA = 2πχ = 4π(1− g)
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Digression: a differential topology calculation
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Evolution of the genus curve
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Evolution of the genus curve

g(ν;λ) =
∞∑

i=1

an(λ)ψn(ν)
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Evolution of the genus curve
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Fin.
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